An Accurate, but Novel Application of the Relative Flow Technique, Using a Moveable Aperture Source of Gas Atoms to Measure Elastic Electron Scattering Differential Cross Sections.

Kyle M. Keane, Physics Department, California State University, Fullerton

Contents

- Basic electron scattering
 - -Experimental setup
 - -Basic scattering equation
- Variations employed in our experiment
 - -Moveable, collimated gas source
 - -Thin aperture gas source
- Relative flow technique
 - -Basic equations
 - -Experimental verification of principle
 - -Flow rate measurements
- Differential cross sections for Ethylene (C₂H₄)
 Incident energies of 2eV, 5eV, 10eV, 20eV, 30eV
- Conclusions

Basic Layout

Diagram of our electron spectrometer

Relative Flow Method

- Flow standard gas (He)
- Measure scattered signal
- Flow gas X with the same gas distribution Determine DCS for X:

$$DCS_{X}(E_{0},\theta) = DCS_{He}(E_{0},\theta) \frac{RFR_{He} Is_{X}}{RFR_{X} Is_{He}} \sqrt{\frac{M_{He}}{M_{X}}}$$

Mean Free Path Issue

$$\lambda = \frac{1}{\sqrt{2}\pi n\delta^2}$$

δ is the Gas Kinetic Molecular Diameter

- Olander and Kruger (1970) Angular profile (FWHM) of gases for tubes dependent on the mean-free path.
- Rugamas et al. (2000) Experimental evidence

Profiles vs. Mean-Free Path

Rugamas et al. (2000)

Gas Distribution of a Thin Aperture Source

Rugamas et al. (2000) CSUF

Thin-Aperture Moveable Gas Source

Transformation of Basic Scattering Equation

$$I_{s} = I_{o} n l \frac{d\sigma}{d\Omega} \Delta \Omega \quad \text{Basic scattering amplitude from theory}$$
Flow rate RMS velocity Ideal Gas Law
$$\stackrel{\dot{N} = n A v}{\stackrel{1}{2} m v^{2}} = \frac{3}{2} kT \quad P V = N k T$$

$$n = \frac{\dot{N}}{A v} \quad v = \sqrt{\frac{3 kT}{m}} \quad \dot{P} = \frac{d}{dt} \left(\frac{N kT}{V}\right)$$

$$n = \frac{\dot{N} \sqrt{m}}{A \sqrt{3 kT}} \quad \dot{P} = \frac{k}{v} (N \dot{T} + \dot{N} T)$$

$$\alpha = \frac{1}{A \sqrt{3 kT}} \quad \dot{P} = \frac{kT}{v} \dot{N}$$

$$\beta = \frac{V}{kT}$$

$$\dot{N} = \beta \dot{P}$$

$$I_{s} = I_{o} \alpha \beta \dot{P} \sqrt{m} 1 \frac{d\sigma}{d\Omega} \Delta \Omega$$
 New scattering equation

Differential Cross Section of Gas X

$$I_{s}^{x} = I_{o}^{x} \alpha_{x} \beta_{x} \dot{P}_{x} \sqrt{m_{x}} l_{x} \frac{d\sigma_{x}}{d\Omega} \Delta\Omega_{x}$$

$$I_{s}^{He} = I_{o}^{He} \alpha_{He} \beta_{He} \dot{P}_{He} \sqrt{m_{He}} l_{He} \frac{d\sigma_{He}}{d\Omega} \Delta\Omega_{He}$$

$$l_{x} = l_{He} \qquad \text{Same distribution of gas}$$

$$\alpha_{x} = \alpha_{He} \qquad \text{Same aperture}$$

$$\Delta\Omega_{x} = \Delta\Omega_{He} \qquad \text{Same detector}$$

$$\beta_{x} = \beta_{He} \qquad \text{Same system}$$

$$I_{s}^{x} = I_{o}^{x} \dot{P}_{x} \sqrt{m_{x}} \frac{d\sigma_{x}}{d\Omega}$$

$$I_{e}^{He} = I_{e}^{He} \dot{P}_{He} \sqrt{m_{He}} \frac{d\sigma_{He}}{d\Omega}$$

$$DCS_{x} (E_{o}, \theta) = \frac{I_{s}^{x} I_{o}^{He} \dot{P}_{He} \sqrt{m_{x}}}{I_{s}^{He} I_{o}^{x} \dot{P}_{x} \sqrt{m_{x}}} DCS_{He} (E_{o}, \theta)$$

Stabilization Through Aperture P measurements

Filling of Evacuated Volume dP/dt measurements

dP/dt vs. P

Initial Tests with a Known Gas - N₂

DCSs available:

- \times Srivastava et al., JPL, CA Δ Shyn and Carignan, Ann Arbor, MI
- □ Nickel et al., UC Riverside
- ◊ Gote and Ehrhardt, Kaiserslautern, GE

Molecular Nitrogen at 20eV

Molecular Nitrogen at 30eV

Final Results: Differential Cross Sections: Ethylene at Incident energies of 2eV, 5eV, 10eV, 20eV, and 30eV

- O ANU Data □ Sophia U.
- ——— Caltech Theory

- CSUF CSUF 4-5 days later requiring a retune of spectrometer
- O ANU Data <a>D Sophia U.
- ——— Caltech Theory

- OSUF
- O ANU Data
 D Sophia U
- Caltech Theory

- OSUF
- O ANU Data
 D Sophia U
- Caltech Theory

- OSUF
- O ANU Data
 D Sophia U
- Caltech Theory

Conclusions

- C₂H₄ expts are on solid ground
- Our method clearly works
- Simple to apply
- Rapid and reliable
- Does not need to know δ for the target gas and can therefore be extended to molecules whose δ -values are unavailable

e.g. CH_3OH , C_2H_5OH , C_3H_7OH , H_2O (?), Bio-molecules

Presently have extended technique to CH₃OH and C₂H₅OH Poster R1.00099

An Accurate, but Novel Application of the Relative Flow Technique, Using a Moveable Aperture Source of Gas Atoms to Measure Elastic Electron Scattering Differential Cross Sections

TELUS Convention Centre - Exhibition Hall B

Friday 4:00pm - 6:00pm