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Outline 

-Introduction to phase qubit and partial measurement (5 slides) 

-Explanation of experimental results of uncollapsing (8 slides) 

-Proposed experiment for suppressing decoherence using uncollapsing (3 slides) 

-Redundant coding to protect against x rotations (6 slides) 

-Performance of these codes for detection of relaxation errors (4 slides) 

-Two qubit quantum error detection of rotations in presence of dephasing (2 slides) 

-Future directions (1 slide) 
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Full Measurement Using Tunneling 
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Partial measurement 
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lower barrier for short time t 
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Bayesian Description of State Evolution 
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Project 1: Uncollapsing Experiment 

If tunneling does not occur, the qubit state is recovered 

In experiment, only data for cases where tunneling does not occur is kept 

State 

Prepared 

Doesn’t Tunnel Doesn’t Tunnel 

Partial 

Measurement 
Projects state 

toward 0 

 rotationPartial 

Measurement 
Projects state 

toward 0 

 rotation



Ideal Theory 

At each partial measurement there is a probability that the qubit will tunnel.  Therefore, there is a 

probability that this procedure will destroy the qubit, otherwise you have performed a Pi rotation. 

  1F perfect rotation    

The fidelity should be independent of the measurement strength! 
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Partial Measurement 

No tunneling, 

Bayesian update 

Pi rotation 

Partial Measurement 

No tunneling, 

Bayesian update 



Questions of Theoretical Interest 
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Why does it not start from 1? Why does it decrease so rapidly at large, but 

far from projective, measurement strengths? 
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Measurement Strength (p) 



Understanding Their Data Analysis 
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Simple Analytics-Just Relaxation 
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No Relaxation 

With Relaxation- 

We unravel the continuous process of relaxation into discrete outcomes with probabilities 

Similar to treatment of partial measurement 
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The Effect of Relaxation (T1) on Fidelity 

Duration of Process = 44 ns 

 T1(ns)= 1, 10, 45, 100, 300, 450, 700, 1500 

F(p=0) 

Duration of Process = t 
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Measurement Strength (p) 
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Important Results From Analytics 
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Numerics-What Else Might Be Happening 
LINK 

Experimental Protocol 

 

-state prep (3 ns) 

 

 

 

-partial measurement (4 ns) 

-wait (3 ns) 

 

-Pi rotation (10 ns) 

-wait (3 ns) 

 

-partial measurement (4 ns) 

 

 

-tomography (10 ns) 

Assumptions 

-Known pure state was prepared 

-Higher levels have not been populated 

-additional dephasing 

-spurious excitations 

-higher levels tunnel 

-measurement fidelity 

-rotation angle skewed 

-damping of Rabi oscillations 

-same as first 

-change in level splitting 

-additional decoherence 

-asymmetry of measuring x, y, and z 

-higher levels tunnel 

-measurement fidelity 

Relaxation and Dephasing Throughout 



Fidelity of Numerical Results and Experiment 

N. Katz et al., Phys. Rev. Lett. 101, 200401 (2008) 
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Status of Project 1 

- Still in progress 

- Main features of experimental results explained 

- Investigating more sophisticated models 

- Paper will be written soon 

- Inspired project 2 



Project 2-Decoherence suppression using uncollapsing 
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Alexander N. Korotkov and Kyle Keane., Phys. Rev. A 81, 040103(R) (2010) 



Why and How it should work 
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Results 
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Measurement strength (p) 

-Wise choice of uncollapsing 

measurement strength will return a state 

that is arbitrarily close to the initial state 

 

- Even a bad choice of uncollapsing 

strength will yield an improvement over 

pure relaxaed state 

-Ideal operations with relaxation and 

dephasing during the error period, the 

ideally returned state is only slightly 

degraded 

 

- Improvement is still realizable in the 

presence of considerable decoherence 

during the operations, although perfect 

restoration is no longer achievement 

K and K., Phys. Rev. A 81, 040103(R) (2010) 



Project 3: Quantum Coding with Phase Qubits 
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Single Qubit Rotations 

In multiple qubit space 

Single Qubit Operations 

Rotations 

Mulitple Qubit Operation 



             0 000 100 , 010 , 001 000      

Measure state of bit (no loss of superposition) 

Create three copies 

Single bit flip error 

Measure all three bits and put all three in majority state 

           0 000 100 , 010 , 001 000    

           0 000 100 , 010 , 001 000    

           0 000 100 , 010 , 001 000    

Classical Redundant Coding 



 0 1 0 0 000 100       

000 100 000 111     

Quantum Redundant Coding 

     

Measure state of qubit 

Cannot create a copy by a unitary transformation! 

No Cloning theorem 

Cannot measure the superposition! 

Projection onto Eigenvalue 

What can we do? Entanglement. 

Product State 

Two CNOT gates 

That was fun, now what? 

no longer product state 

It is entangled! 

We have, in fact, entangled our system in such a way that x rotations of a single qubit 

can be detected and uniquely corrected! 
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Using three-qubit code to protect against x-rotations 
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Can the three-qubit code protect against relaxation? 

0 11 st1  qubit relaxes

1 10 1 01nd2  qubit relaxes rd3  qubit relaxes

First qubit relaxes 

 0 1 0 0 000 0 0111 11 00        
E U R 

Similar for other two qubits 

Cannot be restored 

U E R 

Measur- 

ement 

Cannot be restored 

Relaxation seems to be similar to 

a bit flip in that it takes  1 0

At finite temperature there are 

also excitations that take  0 1

Aren’t these like a bit flip? 



0 1 1 0   

Relaxation can be represented as  

a projective measurement onto |1> followed by a Pi rotation  

The trick of quantum error correction is to 

indirectly measure what has happened to the qubit and correct the dynamic change. 

Do this without extracting any information about the state of the qubit. 

Any extracted information changes the qubit state. 

In the 5 (or 7 or 9) qubit code, a projective measurement will yield no information 

about the original superposition and therefore leaves the original superposition 

unchanged, and also therefore protects against energy relaxation 

Energy Relaxation 



N qubit, M cycles 

Conditional 

Operation Error Period 

t/M measurement 

Conditional 

Operation Error Period 

t/M measurement 

0N

M cycles 



0N

N ancilla qubits  

initialized to 
0N 

0

Although these codes will not correct for relaxation 

-Can they be used to detect and discard relaxation errors? 

-Will adding more ancilla qubits improve the performance? 

-Can we repeat this fast enough to suppress the chance of having an error? 

-Can we repeat this fast enough to have perfect fidelity of the retained qubit? 

Project 3b-Performance of detection codes with relaxation 



Analytics of Fianl State 
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One Cycle, N Qubits, 

Selection of Result 0 
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X-correction needed 
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Now Y-rotation of first qubit by angle 2: 

Y-rotation of second qubit by angle 2: 
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cos ( | 0 | 1 ) | 0 sin ( | 0 | 1 ) | 1

       

     

           

         

no correction needed 

needs Y 
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0: good  

1: either discard (only detection) 

    or correct (if know which error) 

Project 3c-Two Qubit Quantum Error Detection of Rotations 
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Future directions 

Understanding performance of codes in presence  

 of multiple errors and optimizing  

 experimental visibility and implementation 

Quantum process tomography: how to extract specific information about 

 a process from the Chi matrix 

Theoretical support of experimental progress 



Appendices 



Representations of Errors-Example: Energy Relaxation 

 
 

 

11 01

10 11

1 1 1-

1- 1

p p
D

p p

 


 

  
 
  

  

  

   11 11
1

1
t t

t T
 


 



   00 11t t
t t
 

 
 

 

   01 01
1

1

2
t t

t T
 


 



   10 10
1

1

2
t t

t T
 


 



0

0 0
R

p
K

 
  
 

1 0

0 1
DRK

p

 
    

 
 

2 2

2 2

2

0 1 1
, with probability 1

1

0 , with probability  

p
p

p

p

 
 

  



  
 


  


  

1

0

1

1

T

0 1   

From the normalization requirement 

Need to derive this from commutator!!!!! 

Need to derive this from somewhere!!!!! 

Solving these equations and combining into an operation 

Choosing a specific operator sum decomposition 

If you initially have a pure state, the classical mixture created by this process becomes explicit 

  † †
R R DR DR R R R DR DR DRt K K K K P P            LINK 

1/
1

t T
p e


 

This can be done for any 

operation however only 

some give physically 

meaningful interpretations 

  † †
R R DR DRD K K K K   

Master Equation RETURN 



Representation of experiment specific errors 
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Probabilities for Decoherence Suppression 



Josephson Junction-Phase Dynamics  0 sinJI I 

is the supercurrent through junctionJI  
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Kraus Operator to Mixture of Pure States 
RETURN 

0

0 0
R

p
K

 
  
 

1 0

0 1
DRK

p

 
    

 
 

2 2

2 2

2

0 1 1
, with probability 1

1

0 , with probability  

p
p

p

p

 
 

  



  
 


  


  

  † †
R R DR DR R R R DR DR DRt K K K K P P           

2
2 2† 1 00

0 0
0 00 0

R R R R R
p

K K p p P


     
   

          

0 1   

2

2

 
 

  





 
 
 
 

 
 

 

2 2
2 2†

2 22 2

1 11

1 1 1 1
DR DR

p p
K K p

pp p p p

   
   

      

 

 

    
     
         

 
   

2 2

2 2 2 2

0 1 1 0 1 1

1 1
DR DR DR

p p
p P

p p

   
   

   

   
       

  
       



Project 2-Decoherence suppression using uncollapsing 

r11 

1 

0 

Error Period 

t 

axis of  

p-pulse 1

1
|1pm

p

N N





    

0 |1      

2 2| | | | 1N p     

N




1 p

N







1/

11 11

t T
e  



Partial Measurement 

Markovian Relaxation 
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Using three-qubit codes to protect 
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Using three-qubit code to 

protect against relaxation 
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Can the three-qubit code 

protect against relaxation? 
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Project 3c-Performance of two qubit detection code with relaxation 
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