Beyond Traditional Quantum Measurement A game of quantum peek-a-boo with a purpose PhD research of a CSUF alumni

Kyle Keane

PhD candidate in physics University of California, Riverside Advisor: Alexander Korotkov

CSUF physics department colloquium November 4, 2011

Outline

- Background
 - Quantum Mechanics and Ideal Measurement
 - Real World Measurement
 - Example: Phase Qubit
 - Measurement Reversal
- Where my story begins
 - Explaining experimental results
 - Discovery of new phenomenon
 - Experimental demonstration and verification
- Purpose of this talk
 - Expose to technical jargon and notation
 - Transmit conceptual understanding
 - Share my process of discovery
 - Share my experience with contemporary research

Quantum Mechanics

$$H|\psi\rangle = -i\hbar\frac{\partial}{\partial t}|\psi\rangle$$

Quantum Mechanics = Schrodinger Equation + Collapse Postulate

Schrodinger Equation : Normal evolution in time

$$M|\psi\rangle \xrightarrow{\text{yields}} |\phi_r\rangle$$
 with prob. $P_r = |\langle \psi | \phi_r \rangle|^2$

Collapse Postulate : Instantaneous effects of measurement

What Is Left To Discuss?

Keywords:

POVM, restricted path integral, quantum trajectories, quantum filtering, quantum jumps, stochastic master equation, etc.

Bayesian Formalism

Bayes' Theorem (conditional probability)

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Born's Rule

 $P(\phi) = |\langle \psi | \phi \rangle|^2$ is the probability that the system is in state $|\phi\rangle$

$$P(\boldsymbol{\varphi}|\boldsymbol{r}) = \frac{P(\boldsymbol{r}|\boldsymbol{\varphi})P(\boldsymbol{\varphi})}{P(\boldsymbol{r})}$$

Collapse Postulate is a Special Case $P(\varphi_r | r) = 1$

Representing a Qubit State

Vector decomposition in Euclidean space

 $\overrightarrow{r(t)} = c_x(t)\,\hat{\imath} + c_y(t)\,\hat{\jmath}$

State representation using fixed basis $|\psi(t)\rangle = \alpha(t)|1\rangle + \beta(t)|2\rangle$

Slight technical difference: $\alpha(t)$ and $\beta(t)$ are complex numbers

Usually time dependence is implied $|\psi\rangle = \alpha |1\rangle + \beta |2\rangle$

Example: Phase Qubit

Stable Qubit State $|\psi\rangle = \alpha |1\rangle + \beta |2\rangle$

Quantum Variable (phase δ)

Phase Qubit Circuit

7

Example: Phase Qubit

 $|2\rangle$

1

Measurement

Binary Detection by SQUID

Really Bad Analogy

State |2> Tunnels with $\overline{P}_T(t) = 1 - e^{-\Gamma t}$ |2> $|1\rangle$

Quantum Variable (phase)

Tunneling is like The diver getting embarrassed and cold, then leaving the pool

Person 1 is warm and happy and has no reason to leave

Example: Phase Qubit

Classical Interpretation

When tunneling is detected: Qubit was in state |2> and it is now destroyed

Destructive

When tunneling is **NOT** detected: Qubit was in state $|1\rangle$ and it is now in state $|1\rangle$

Collapse

9

Weak Measurement Reversal

Concept: Independent of Measurement Strength Partially extract real information about state Probabilistically get contradictory information Best description = nothing changed

Numbers are qualitative, α and β are complex

Why Isn't Life Simple?

N. Katz et al., Phys. Rev. Lett. 101, 200401 (2008)

Simulate!

Coding Simulator

Process Prepare, wait, Measurement, wait Switch, wait Measurement, wait Switch

Simulator Code

 $\frac{1}{2\left(.1+\left(1-p\right)^{n}+p^{n}\right)^{2}} \left(\left[.1+\left(1-p\right)^{n/2}\right]^{2} \left(1+5\left(1-p\right)^{n/2}+5\left(1-p\right)^{n}+\left(1-p\right)^{2n/2}\right)-16\left(.\left(.1+p\right)^{n}\right)^{n}+p^{n}\left(1+2\left(1-p\right)^{2n/2}\right)^{2}\right)^{2}\right)^{2} \left(1+2\left(1-p\right)^{2n/2}\right)^{2} \left(1+2\left(1-p\right)^{2n/2$

ps(nb_, N_) := (1 - nb (1 - e^{-2 H}))^H

 $Integrate \left[\frac{2in(s)}{2} \left[1+bi \sin \left[\frac{s}{2}\right]^2\right], \{s,0,\pi\}, \text{ Asymptons } +bi + 2inis (s,0) + 0 \ s, bi < 0 \ s, bi > -1\right] /, \ bi + bi < 0 \ s, bi < 0 \ s, bi > -1$

- definition and analysis (copied and gasted from intermediate calculations)

Pages [4_1, 9_] :=

 $\frac{1}{2\left(-1+\left(1+p\right)^n+p^n\right)^2} \left(\left(-1+\left(1+p\right)^{n/2}\right)^2 \left(1+2\left(1+p\right)^{n/2}+2\left(1-p\right)^n+\left(1-p\right)^{2n/2}\right) - 10\left(\left(-\left(-1+p\right)p\right)^n+p^n\left(2+4\left(1-p\right)^{2n/2}+2\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1-p\right)^{2n/2}+2\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+4\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+2\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+2\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+2\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+2\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}+2\left(1+p\right)^{2n/2}\right)^n+p^n\left(2+2\left(1+p\right)^{2n/2}+2\left(1+p\right)^{$

 $Pe[a_{p_1}, p_{p_1}] = \frac{1}{2} (1 + (1 - p)^n + p^n)$

Show

man(1)
Dict[F_{app}(1, p), (p, 0, 1), Nictity1a + (Thick), Nictianga + (0, 1)],
Nict[F_{app}(1, p), (p, 0, . 3993), Nictity1a + (Kad), Nictianga + (0, 1)],
Nict[F_{app}(1, p), (p, 0, . 3993), Nictity1a + (Nicas), Nictianga + (0, 1)],
Nict[F_{app}(1, p), (p, 0, . 3993), Nictity1a + (Nicas), Nictianga + (0, 1)]),
Nict[F_{app}(1, p), (p, 0, . 3993), Nictity1a + (Nicas), Nictianga + (0, 1)])

Really Bad Analogy

Relaxation

Diver gets tired from being nervous and dives into pool

Assume a Spherical Cow

Simple Answer: Relaxation

N. Katz et al., Phys. Rev. Lett. 101, 200401 (2008)

But, wait... I Don't Get It

When in Doubt, Turn Knobs

N. Katz et al., Phys. Rev. Lett. 101, 200401 (2008)

Relaxation Suppression by WMR

$$\begin{aligned} \alpha |1\rangle + \beta e^{-\Gamma t/2} e^{-t/T1} |2\rangle \\ \equiv \alpha |1\rangle + \beta e^{-\Omega t/2} |2\rangle \end{aligned}$$

$$\mathrm{K} \to \Omega = \Gamma + 1/\mathrm{T} 1$$

Concept: Preferentially Select No Relaxation Decrease Likelihood of being in [2) Relaxation Naturally Suppressed Reverse Measurement and Relaxation

Numbers are qualitative, α and β are complex

Published New Protocol

-Wise choice of uncollapsing measurement strength will return a state that is arbitrarily close to the initial state

- Even a bad choice of uncollapsing strength will yield an improvement over pure relaxaed state

-Ideal operations with relaxation <u>and</u> <u>dephasing during the error period</u>, the ideally returned state is only slightly degraded

Improvement is still realizable in the presence of considerable
 <u>decoherence during the operations</u>, although perfect restoration is no longer achievable

K and K., Phys. Rev. A 81, 040103(R) (2010)

Experiment in Optics Express

Optical Circuit

Results

Weak Measurement realized with Polarization Beam Splitter, Half Wave Plate, and Dark Port

Relaxation realized with similar components, except no dark port

Nearly exact match to theory!!

Jong-Chan Lee, Youn-Chang Jeong, Yong-Su Kim, and Yoon-Ho Kim, "Experimental demonstration of decoherence suppression via quantum measurement reversal," Opt. Express **19**, 16309-16316 (2011)

Happy Grad Student

Eventually, everything seems to work out or fizzle away.

This was a good moment

Applications

Protect a qubit during use in a quantum computer

Protect information from relaxation during distribution of quantum cryptographic key

Conclusions

Weak measurement is consistent with the interpretation that the wave function is a reflection of our best information

New information creates a continuous change if we acknowledge and adapt to it

Weak measurements are reversible, but there is a probability of failure

Even mundane tasks can lead to discoveries

Unexpectedly, weak measurement reversal has a purpose as a decoherence suppression technique for relaxation (Quantum Error Correction)

YES WE CAN!

(Get into graduate school, work really hard, give up our social lives, find an advisor, struggle to catch up with a progressing field, figure out that we do not like the field, find a new advisor, learn jargon, program code, and **fake it until we make it**)