
Creating Accessible Dynamic Content
Kyle Keane

Wolfram Research

Our everyday workflows are increasingly becoming solely reliant on automation and computation. To ensure equal opportunity for all people, innovations in

the accessibility of these technologies are becoming increasingly necessary. In this talk we will discover that within Mathematica’s core language there exists

a robust and complete set of tools for realizing groundbreaking accessibility. When this set of tools is combined with the real-time dynamic computation and

painless deployment available with CDF player, the necessary revolution in technological accessibility becomes a reality.

Introduction

In this workshop we will walk through the creation of accessible dynamic content.

We will mainly spend our time looking at modular components and scable solutions for creating custom UI with minimal reliance on esoteric functionality.

This will not be an extensive course on accessibility, it is rather a demonstration of how to develop building blocks that can be then reused without the need

for extensive programming.

There are five major types of disabilities which are primarily considered when creating accessible computer content.

◼ No Vision (NV)

◼ Low Vision (LV)

◼ Deaf (D)

◼ Motoric (M)

◼ Cognitive (C)

Focus Indication

Since there are no established practices for programming accessibility into a Mathematica code, we need to think about how to approach the problem

pragmatically.

WARNING: Adding Focus Indication to a Slider when Clicked

There is a simple way to do this, but there will be complications down the road.

In[1]:= Grid[{
{Slider[Dynamic[x], {0, 1}, Background → Dynamic[ControlActive[Black, White]]], Dynamic[x]},
{Slider[Dynamic[y], {0, 1}, Background → Dynamic[ControlActive[Black, White]]], Dynamic[y]}

}]

Out[1]=

0.

0.

Unfortunately, this doesn’t always behave as expected

In[2]:= Manipulate[{x, y},
{x, 0, Slider[Dynamic[x], {0, 1}, Background → Dynamic[ControlActive[Black, White]]] &},
{y, 0, Slider[Dynamic[y], {0, 1}, Background → Dynamic[ControlActive[Black, White]]] &}

]

Out[2]=
x

y
{0, 0}

PRIMER: Using Customized Sliders in a Manipulate

Manipulate comes with controls built in, but the built in focus indication may not be enough for a low-vision user and is only displayed when a control is active.

Standard Controls

In[3]:= Manipulate[{x1, y1},
{x1, 0, 1, Slider},
{y1, 0, 1, Slider}

]

Out[3]=
x1

y1
{0, 0}

Custom Controls

We can also use our own controls to do the same thing, this will allow us to modify the appearance and function of a control object.

In[4]:= Manipulate[{x, y},
{x, 0, Slider[Dynamic[x], {0, 1}] &},
{y, 0, Slider[Dynamic[y], {0, 1}] &}

]

Out[4]=
x

y
{0, 0}

Defining Custom Control Objects

Adding Focus Indication to a Slider when Clicked {LV, C, M}

In order to enable new functionality we will be utilizing EventHandler[expr,{“event:>action”}]

We will also use Module[] so that the variables will be treated locally.

2 TechConferenceTalk3.nb

In[5]:= clickedSlider[x_, {xmin_, xmax_}]:=
Module[
{insideQ},
EventHandler[
Slider[x, {xmin, xmax}, Background → Dynamic[If[insideQ, Black, White]]]
,
{"MouseDown" ⧴ (insideQ = True), "MouseUp" ⧴ (insideQ = False)},
PassEventsDown→ True

]

]

Now, we can simply use our new slider

In[6]:= {clickedSlider[Dynamic[x], {0, 1}], Dynamic[x]}

Out[6]= , 0.

and we can include it in any location we might want a slider, e.g. Manipulate[]

In[7]:= Manipulate[{x, y},
{x, 0, clickedSlider[Dynamic[x], {0, 1}] &},
{y, 0, clickedSlider[Dynamic[y], {0, 1}] &}

]

Out[7]=
x

y
{0, 0}

Adding Focus Indication to a Slider when Moused Over {LV, C, M}

We can also add focus indication that shows which control the mouse will affect.

Here is our new slider

In[8]:= mouseoverSlider[x_, {xmin_, xmax_}]:=
Module[
{insideQ},
EventHandler[
Slider[x, {xmin, xmax}, Background → Dynamic[If[insideQ, Black, White]]]
,
{"MouseEntered" ⧴ (insideQ = True), "MouseExited" ⧴ (insideQ = False)}

]]

We can use our new slider in the same way as before

In[9]:= {mouseoverSlider[Dynamic[x], {0, 1}], Dynamic[x]}

Out[9]= , 0.

Adding Sonic Indication when Moused Over {NV, LV, C, M}

These are our spoken results for easy modification

In[10]:= in[x_String] := StringJoin["in ", x]
out[x_String] := StringJoin["out ", x]

Here is our new slider, we simply add tasks to our EventHandler[]

TechConferenceTalk3.nb 3

In[12]:= mousespeakSlider[x_, {xmin_, xmax_}, name_String]:=
Module[
{insideQ},
EventHandler[
Slider[x, {xmin, xmax}, Background → Dynamic[If[insideQ, Black, White]]]
,
{"MouseEntered" ⧴ (insideQ = True; Speak[in[name]]), "MouseExited" ⧴ (insideQ = False;

Speak[out[name]])}
]]

We can use it just like before

In[13]:= {mousespeakSlider[Dynamic[x], {0, 1}, "x"], Dynamic[x]}

Out[13]= , 0.

SUMMARY: All Three Inside a Manipulate

In[14]:= Manipulate[Column[{x, y, z}],

{{x, 0, "x (clicked)"}, clickedSlider[Dynamic[x], {0, 1}] &},
{{y, 0, "y (mouse)"}, mouseoverSlider[Dynamic[y], {0, 1}] &},
{{z, 0, "z (spoken)"}, mousespeakSlider[Dynamic[z], {0, 1}, "z"] &}

]

Out[14]=

x (clicked)

y (mouse)

z (spoken)

0
0
0

Mouse Driven UI

Here are two methods to acquire and use the mouse position inside an object, the second is better for working with Sound.

Optimally, the strengths of each method can be used in tandem for appropriate tasks.

Method 1 (better for heavy computations)

Acquiring the Mouse Position

This is the point where most people can easily program in Mathematica

In[15]:= mousepos[] :=
Annotation[
Graphics[Rectangle[], ImageSize → 100],
Dynamic[MousePosition["GraphicsScaled"]],
"Mouse"]

Again, this becomes just another object

4 TechConferenceTalk3.nb

In[16]:= mousepos[]
Dynamic[MouseAnnotation[]]

Out[16]=

Out[17]= Null

Acquiring the Entry Time

Let’s pre-define our events

In[18]:= indicator =

{"MouseEntered" ⧴ {Speak["entered"], insideQ = True},
"MouseExited" ⧴ {Speak["leaving"], insideQ = False}};

Here we define our object

In[19]:= entered[] :=
EventHandler[
Graphics[{Dynamic[FaceForm[If[insideQ, Green, Red, Red]]], Rectangle[]}, ImageSize → 100],
indicator]

Now, we can use it like any other object

In[20]:= entered[]

Out[20]=

Using this Information: An example

This plays a Midi sound that has volume proportional to the distance of the mouse cursor from the lower lefthand corner

TechConferenceTalk3.nb 5

In[21]:= indicator3 =

{"MouseEntered" ⧴ {Speak["entered"], insideQ3 = True},
"MouseExited" ⧴ {Speak["leaving"], insideQ3 = False}};

Column[{
Dynamic[
If[insideQ3,
{mouse = MousePosition["GraphicsScaled"],
dist = EuclideanDistance[mouse, {0, 0}]}, "Outside", initialized]

],
EventHandler[
Dynamic[Graphics[

Flatten[
{If[insideQ3, FaceForm[Green], FaceForm[Red], FaceForm[Red]],
Rectangle[],
If[insideQ3,
{Arrowheads[Large], Thick, White, Arrow[{{0, 0}, mouse}]}]

}

], ImageSize → 100]]
,
indicator3],

Dynamic[
If[insideQ3,
EmitSound[Sound@SoundNote[2, 10, "Flute", SoundVolume → dist]],
EmitSound[Sound@SoundNote[SoundVolume → 0]]

], UpdateInterval→ 1
]

}]

Out[22]=

Outside

Null

This shows how we can break a graphic into sections and pass location information to an arbitrary function

6 TechConferenceTalk3.nb

In[38]:= indicator2 =

{"MouseEntered" ⧴ {Speak["entered"], insideQ2 = True},
"MouseExited" ⧴ {Speak["leaving"], insideQ2 = False}};

grid[{xmin_, ymin_}, {xmax_, ymax_}, xdiv_, ydiv_, size_] :=

EventHandlerGraphics

Flatten

TableEdgeForm[White],

Annotation

Rectanglei
1

xdiv
, j

1

ydiv
, (i + 1)

1

xdiv
, (j + 1)

1

ydiv
,

{i, j}

(*{i,j},pitch=IntegerPart-5+
10 i2+j2

((xdiv-1)xmax)2+((ydiv-1)ymax)2
,EmitSound[Sound@SoundNote[pitch,1,"Flute"]]*),

"Mouse"

, {i, xmin, (xdiv - 1) xmax}, {j, ymin, (ydiv - 1) ymax}

, ImageSize → size,

indicator2

empty[{f__}] := f

Column[{grid[{0, 0}, {1, 1}, 20, 20, 100],

ExpressionCell[Grid[{
{"Mouse Annotation", Dynamic[MouseAnnotation[]]},
{"Passed Values", Dynamic[

If[insideQ2,
Which[
Evaluate[
empty[
Flatten[
Table[{MouseAnnotation[] ⩵ {i, j}, f[i, j]}, {i, 0, 19}, {j, 0, 19}], 2]

]]]]]}}]]}]

Out[41]=

Mouse Annotation Null
Passed Values Null

Method 2 (better for including sound)

Creating a sound object

We will work with beeps, which require us to use a certain number of wavelengths played at a certain interval

TechConferenceTalk3.nb 7

In[27]:= λ[f_, δt_]:=
Play[Sin[f 2 π t], {t, 0, δt}]

Manipulateλ440,
N

440
, {N, 1, 100}, ControlPlacement→ Top

Out[28]=

N

0 s | 8000 Hz

Creating a soniified object

To create sound that will only play while the mouse is inside a specific object, we will use RunScheduledTask[]

In[29]:= beepingSquare[BeepsPerSecond_, RelativeLengthPerBeep_]:=
Graphics

EventHandler

Rectangle[],

"MouseEntered" ⧴

test = True,
n = 0,
Quiet[RemoveScheduledTask[task]],
task =

RunScheduledTask

mouse = MousePosition["GraphicsScaled"],
dist = EuclideanDistance[mouse, {0, 0}],

Iftest, Quiet@EmitSound@Sound@λ300 dist + 250,
RelativeLengthPerBeep

BeepsPerSecond

,

1

BeepsPerSecond
, 50

,

"MouseExited" ⧴ {test = False, Quiet[RemoveScheduledTask[task]]}

, ImageSize → 100

8 TechConferenceTalk3.nb

Using our object

In[30]:= beepingSquare[5, .8]

Out[30]=

Keyboard Navigation

In order to create custom hotkeys we will utilize an InputField[] and an EventHandler[].

These hotkeys can be used to trigger arbitrary code and can thus be used to control UI elements as well as provide real-time feedback about live calculations.

Using an InputField as a Homebase

Let’s create a homebase that is activated by clicking inside the InputField[]

In[31]:= homebase[activated_String, hotkeys__]:=
Row[{

EventHandler[
EventHandler[
InputField["click here to activate", FieldSize → {15, 2}],
{"MouseClicked" ⧴ Speak[activated]},
PassEventsDown→ True],

hotkeys,
PassEventsDown→ False]

}]

Now we can list some HotKey Commands

In[32]:= hotkeys =

{{"KeyDown", "x"} ⧴ {If[x < 10, x++], Speak[ToString[StringForm["x is ``", x]]]},
{"KeyDown", "y"} ⧴ {y++}};

Placing our homebase inside a Manipulate

In[33]:= Manipulate[
StringForm["x is ``", x],
{{x, 0, "x"}, None},
ExpressionCell[homebase["success", hotkeys]],
SaveDefinitions→ True

]

Out[33]= "click here to activate"
x is 0

In this way controls are also linked up as they should be

TechConferenceTalk3.nb 9

In[34]:= Manipulate[Column[{StringForm["x is ``", x], StringForm["y is ``", y]}],

{{x, 0, "x (linked)"}, PopupMenu[Dynamic[x], Range[0, 10]] &},
{{y, 0, "y (linked)"}, PopupMenu[Dynamic[y], Range[0, 99]] &},

ExpressionCell[homebase["success", hotkeys]]

, SaveDefinitions→ True
]

Out[34]=

x (linked) 0

y (linked) 0

"click here to activate"

x is 0

y is 0

10 TechConferenceTalk3.nb

